Beyond 3-D & Electronic Printing

Nanomaterials-based Manufacturing Platform for Printed Sensors, Electronics, Energy and Material Applications

Ahmed Busnaina,

W. L. Smith Professor and Director, Northeastern Univ.

NSF Nanoscale Science and Engineering center for High-rate Nanomanufacturing

www.nano.neu.edu

Center for High-rate Nanomanufacturing

Northeastern University

What is the status and the future of 3-D and Printed Electronics?

Printed electronics methods are being used to manufacture OFETs, OLEDs, ICs and OPVCs.

The modern 3D printer and printed electronics uses inkjet printer utilizing an ink that could contain a polymer or particles suspended in a solution.

Inkjets are very slow, so patterns requiring higher resolution and/or large areas take a very long time.

➢ inkjets offer lower throughput of around 100 m²/h and lower resolution. If we use a very fast inkjet printer (1 m/s) to print 1 micron lines (current resolution is 30 micron) over 1mx1m, it will take 12 days to print.

How could printed electronics compete with current semiconductor manufacturing in performance and scale and lower the cost by by two orders of magnitude?

How can we accomplish High-rate Nanoscale Printing?

Leveraging the printing processes developed at CHN could lead to the development of a printing system that's like offset printing, where you have a big plate, you ink it, and one hit, you're done.

Only here, the ink is made of nanoparticles, nanotubes, polymers or other nanoelements that are attracted to the printing template using directed assembly.

This novel approach will be accomplished by integrating multiple directed assembly processes, printing and semiconductor manufacturing.

This novel approach offers 1000 times faster printing with a 1000 times higher resolution.

Introducing a New Manufacturing Technology for Beyond 3-D & Electronic Printing

- Additive and parallel
- Scalable high throughput (much faster than 3-D printing)
- Printing down to 20nm
- Room temperature and pressure
- Prints on flexible or hard substrates
- Multi-scale; can print nano, micro and macro structures on the same layer
- Little use of chemicals (uses mostly water)
- Material independent
- Very low energy consumption
- Very low capital investment (equipment)

How Does it Work? Directed Assembly and Transfer

CHN Team Strength and Capability

NEU: Directed assembly, MEMS, fabrication, contamination control

Semiconductor & MEMs fab

7,000 ft² class 10 and 100 cleanrooms

UML: High volume polymer processing and assembly

Center for High-rate Nanomanufacturing

A unique partnership

UNH: Synthesis, self-assembly

Plastics processing labs • 20,000 ft² + **MSU:** Molecular Modeling

Synthetic labs • 10,000 ft² +

Institution	Faculty	Post-docs	Graduate	Undergrad.	Total
NEU	17	6	31	8	62
UML	14	6	27	13	60
UNH	7	7	15	10	39
MSU	1	1	0	0	2
TOTAL	39	20	73	23	163

Strong Industrial Partnerships

Over 30 companies

NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN)

Leverage

- Over the past 8 years, CHN has obtained over \$51 million
- CHN has received a \$2 million grant to promote commercialization.
- Funding from Industry is over \$7.5 million

Development of IP Protfolio

• Over the past 8 years, CHN has filed more than 75 patents (20 awarded).

Spin-offs

• launched Innovacene and BIOLOM by CHN professors and graduate students.

Investment in People

• Hired more than 24 young professors that boosted CHN capability in nanomanufacturing.

The Kostas Center

What Structures Can This Technology Make?

Rapid, multi-scales assembly of nanoparticles

Rapid, multi-scales assembly of Carbon Nanotubes

Rapid, multi-scales assembly of polymers

CHN Toolbox Bridging research to applications

Templates	Nanoelements	Assembly Processes	Transfer Processes	Substrates	Applications
Microwires template	Nanoparticles	Electrophoretic 2-D and 3-D	Direct transfer (no functionalization)	Silicon	SWNT switch for memory devices
Nanowires templates	Carbon nanotubes (SWNTs and MWNTs)	Chemical Functionalization	Direct transfer with chemical functionalization	Polymer	Polymer-based Biosensors
Nanotrench template	Conductive polymers (PANi)	Electrophoretic and chemical functionalization	No transfer needed	Metal	Nanoparticle- based Biosensors
Template-free	Polymer blends	Dielectrophoretic 2-D and 3-D	Reel-to-reel transfer		SWNT Batteries
Damascene Template	Fullerenes	Convective	Switchable functionalization		Photovoltaics
Flexible Damascene Template	Acenes	Convective interfacial			SWNT Chem Sensors

Damascene Templates for Assembly and Transfer

Silicon-

Templates

Templates for

Manufacturing

Roll-to-Roll

Flexible

based Hard

Fabrication of Chiral Metamaterial (mm Scale features)

N Wongkasem et al, J. Opt. A: Pure Appl. Opt. 11 (2009) 074011

What Applications Could This Technology Make?

Nanoelectronics

Flexible transparent n-type MoS₂ transistors

Nanotechnology, Vol. 22, (2012).

> Heterogeneous SWNTs and MoS₂ complimentary invertors through assembly

Nanotechnology, Vol. 23, (2012)

Rose Bengal Molecular Doping of CNT Transistors

RB-Na doping shifts the threshold voltage of CNTFETs up to ~6V, lower the sub-threshold swing for 4 times, and increase the effective field-effect mobility

In vivo Nano Biosensor

Langmuir, 27, 2011 Lab on a Chip Journal, 2012

- ✓ Multiple-biomarker detection
- ✓ High sensitivity
- ✓ Low cost
- ✓ Low sample volume
- ✓ In-vitro and In-vivo testing

Incubated with human plasma spiked with CEA Detection limit: 15 pg/ml Current technology detection limit is 3000 pg/ml

Image of the *in-vivo* biosensor (0.1 mm x 0.1 mm) after animal testing

Biosensor for Physiological Monitoring of D-glucose/Llactate/urea

Chemical and Bio Sensors

Functionalized SWNT Chemical sensor

- Developed, fabricated and tested a microscale robust semiconducting SWNT based sensor for the detection of H₂S, simple alkanes, thiol, etc.
- Working in harsh environment (200°C; 2500Psi).
- Specific in various environments (N₂, Air, Water vapor, Water, alkanes, etc.)
- Simple inexpensive 2-terminal device
- High sensitivity ~ppm.

Monolithic Chemical Sensors

> The SWNTs integration on CMOS circuitry demonstrates a step towards realizing integrating nanomaterials on current semiconductor devices.

SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process.

➤ The the gas sensor was enhanced (up to ~300% and ~250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs.

Application

Organic solvent Chemical sensors; Bio sensors Modifications can lead to organic vapor sensors

Kim, Sonkusale, Busnaina, Dokmeci, et al. Nanotechnology, 21 (2010)

Energy Harvesting

SWNT based infrared energy harvesting device

- Developed rectifying SWNT antennas having the potential for absorption of far and mid-Infra red incident light.
- Developed both Zig-Zag and linear designs.
- Rectifying circuit consists of commercially available MIM diodes operating in the W band.
- Harvesting energy wherever there is temperature difference of >5 degrees

CNT Infrared Energy Harvester

CNT Battery Discharge Capacity

Number of Active Material Layers

			CNT
			LiMn ₁ O ₄
		CNT	CNT
		LiMn ₂ O ₄	LiMn ₂ O ₄
	CNT	CNT	CNT
	LiMn ₂ O ₄	LiMn ₂ O ₄	LiMn ₂ O ₄
CNT	CNT	CNT	ONT
LiMn,O ₄	UMn ₂ O ₄	LiMn ₂ O ₄	LiMn ₂ O,
A	AI	A	Al

	Anode mAh/g	Cathode mAh/g	Li-ion cell Specific energy Wh/kg	Li-ion cell Energy density Wh/L
Commercia	350	180	250	650
1 Li-ion	(Graphite)	(NCA)		
Technolog				
У				
CHN's	2000-	225-250	350-400	800-1000
Work	3000	(LLNMC)		
	(Si)			

- Excellent discharge capacity.
- Discharge capacity is a linear function of number of layers.
- Fabricated coin cells.

EMI Shielding

SEM Images of Cross-bar Structure of aligned carbon nanotubes

Need:

- Very high shielding effect over a defined range
- Cost effective
- Operational over wide temperature ranges
- **Optical transparent**

Performance comparison for EMI shielding

		_		
and the second			Frequency	RF Attenuation (dB)
		1	1 MHz	1.38E+02
	Mesh period Mesh height	$= 1\mu$ = 10 μ - 20nm	10 MHz	1.18E+02
			100 MHz	9.82E+01
<u>2 μm</u>	Mesh length	= 201111 = 2m	1GHz	7.80E+01
	Mesh Width	= 2m	10 GHz	5.82E+01
	Optical trans	= 90.3	100 GHz	3.80E+01
	I Contraction of the second		1 THz	1.80E+01

Material	Density(kg/m ³)	Mass (kg)	Bulk Resistivity(Ωcm)	RF Attenuation (dB)
Al	2.70E+03	4.32E-05	2.70E-08	42.96
Cu	8.92E+03	1.43E-04	1.67E-08	47.11
Au	1.93E+04	3.09E-04	2.20E-08	44.73
Fe	7.87E+03	1.26E-04	9.70E-08	32.01
Ti	4.51E+03	7.21E-05	4.20E-07	19.98
W	1.93E+04	3.08E-04	5.60E-08	36.69
SWNT*	1.33E+03	2.13E-05	1.67E-11	107.07

*Philip G. Collins and Phaedon Avouris, 62 Scientific American December 2000

Plasmonic Enhancement – Adaptive Camouflage

SERS Sensors

Can be scaled to very large areas (cm²)

Control of ~8 -10 nm gap between assembled particle

Assembly time can be reduced to order of secs

➢ SERS enhancement factors of 10⁷

Applications

- Chemical sensors; Bio sensors
- Energy solar conversion
- Spacers
- Local field amplifiers

Liberman, Yilmaz, Busnaina, et. al., Advanced Materials 2010

Industry Supported Applications

CHN emerging applications roadmap led to increased industrial sponsorship

Rethinking Manufacturing

Enabling from Nano to Macro; from Electronics to Medicine; from Energy to Materials

- This technology is a great enabler and equalizer
- A nanofactory could be built for under \$50 million, a small fraction of today's cost
- Nanotechnology accessible to millions of innovators and entrepreneurs
- Unleash a wave of creativity

Questions and Discussion?

Assembly of Nanoparticles

Nanopillars made from Conducting, Semiconducting and/or **Insulating Materials**

11'

Assembly of Carbon Nanotubes

Assembly of Heterogeneous Polymers

Center for High-rate Nanomanufacturing

Damascene Templates for Assembly and Transfer

Silicon-

Templates

Templates for

Manufacturing

Roll-to-Roll

Flexible

based Hard

Nanoelements Assembly on Functionalized Damascene Templates

Electrical Properties of Highly Organized SWCNT Networks

Two-terminal I-V Properties

Channel Width (nm)

• Alignment gives the network semiconducting behavior

Somu, Jung, Busnaina, et. al., ACS Nano, 4, 4142-4148 (2010)

Assembly on various substrates

- Large scale assembly on polymer and silicon substrates
 - Enables assembly of lines over large areas (i.e., centimeters)

Aligned CNTs on parylene, polycarbonate, polystyrene or Si wafers

Xiong, X, Jaberabsari, L, Hahm, M G, Busnaina, A, and Jung, Y, J, *Small*, 3 (12) 2006 (2007) Jaber-Ansari, L, Hahm, M G, Somu, S, Echegoyen Sanz, Y, Busnaina, A, and Jung, Y J, *J. Am. Chem. Soc.,* 131 (2), pp 804 (2009)

Jaberasani, L., Somu, S. Hahm, M G, Busnaina, A, and Jung, Y J, *Appl. Phys. A., 5194 (2009)* Xiong, X., Chen, C.-L., Ryan, P., Busnaina, A. A., Jung, Y. J. and Dokmeci, M. R., Nanotechnology, 20, (2009) Somu, S., Wang, H., Kim, y., Jaberansari, L., Hahm, Mg, Li, B., Kim, T., Xiong, X., Jung, Yj, Upmanyu, M. and Busnaina, A., ACS Nano, 4, (2010)

Fabrication of Chiral Metamaterial (mm Scale features)

N Wongkasem et al, J. Opt. A: Pure Appl. Opt. 11 (2009) 074011

High-rate Transfer (< 1 min)

J. of Macromolecular Rapid Comm, 2006

Bo Li, A. Busnaina, M. Upmanyu, Y. Jung, Advanced Functional Materials, 2011

Transfer of assembled SWNT Wires

ACS Nano, 2011

Transfer of Vertically Aligned (3D) SWNTs on Polymer Substrates

M. Hahm, Bo Li and Y. Jung, Submitted

1. SWCNTs Growth on SiO₂ Chip

2. Spin Coating PDMS on SiO₂ Chip

3. Curing Polymer

4. Removing SiO₂ Chips

Reconfigurable Nanomanufacturing

Process Flow for Nanoparticle-based Biosensors

Templates	Nanoelements	Assembly Processes	Transfer Processes	Substrates	Applications
Microwires template	Nanoparticles	Electrophoretic	Direct transfer (no functionalization)	Silicon	SWNT switch for memory devices
Nanowires templates	Carbon nanotubes (SWNTs and MWNTs)	Chemical Functionalization	Direct transfer with chemical functionalization	Polymer	Polymer-based Biosensors
Nanotrench template	Conductive polymers (PANi)	Electrophoretic and chemical functionalization	No transfer needed	Metal	Nanoparticle- based Biosensors
Template-free	Polymer blends	Dielectrophoretic	Reel-to-reel transfer		SWNT Batteries
Damascene Templates	Fullerenes	Convective	Switchable functionalization		Photovoltaics
Flexible Damascene Template	Acenes	Convective interfacial			SWNT Chem Sensors

CHN Directed Assembly Toolbox

Process	Speed	Scalability	Nanoelement property	Mechanism	Demonstrated assembly of
Electrophoretic Asssembly	Fast	Yes	Charge	Electrophoresis	Nanoparticles, CNTs, polymers
Chemical Functionalization	Fast/ slow	Yes	Functionalization	Chemistry	Nanoparticles, CNTs, polymers
Electrophoretic and chemical functionalization	Fast	Yes	Charge and surface functionalization	Electrophoresis and surface energy	Nanoparticles, CNTs, polymers
Dielectrophoretic	Fast	Yes/No	Dielectric constant	Dielectrophoresis	Nanoparticles, CNTs, polymers
Convective	Slow	No	Surface Functionalization	Convection	Nanoparticles
Convective interfacial	Fast	Yes	Surface Functionalization and surface tension	Convection and interfacial force	Nanoparticles

NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN)

Leverage

- Over the past 8 years, CHN has obtained over \$51 million in (NU share is > 70%)
- At Northeastern, over the past 4 years alone, CHN has attracting over \$16 million.
- CHN has received a \$2 million grant the State to promote commercialization.

Development of IP Protfolio

- Over the past 8 years, CHN has filed more than 75 patents (20 awarded). Spin-offs
- launched Innovacene and BIOLOM by CHN professors and graduate students. Investment in People
- Hired 9 top young professors that boosted NU capability in nanomanufacturing. Future plans
 - Applying with industry partners for a nanomanufacturing ERC (> 35\$ million)
 - Applying with industry partners for an Adv. manufacturing Institute (> 150\$ million)

Nanomanufacturing Applications Roadmap

Strong Industrial Partnerships

Over 30 Companies

Industry Supported Applications

CHN emerging applications roadmap led to increased industrial sponsorship

CHN Applications

> Layered Carbon Nanotube architecture for high power density Li-ion battery

> Flexible transparent n-type MoS₂ transistors

Heterogeneous SWNTs and MoS₂ complimentary invertors through assembly

CHN Applications

Carbon Nanotube Infra red energy harvester

Functionalized Carbon Nanotube enzymatic Glucose sensors

